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Abstract
The effect of a strongly anisotropic superconducting surface layer on the transmittance,
reflectance and absorptance of a one-dimensional, layered dielectric composite with
periodically alternating, isotropic constituents for linearly polarized, normally incident
electromagnetic radiation is studied both analytically and numerically. The underlying model of
the electric permittivity of the superconducting constituent permits photonic excitation at
frequencies both below and above the superconductor pair breaking frequency as well as
thermal and normal scattering right up to the superconductor critical temperature. The optical
properties addressed reveal traits such as band-like patterns of the transmittance and reflectance,
but also step-like or smeared-out patterns of the reflectance and absorptance, displaying a
marked reference to the particular type of polarization by virtue of the anisotropy of the
superconducting layer covering the dielectric composite. Thus, in switching from transverse
electric to transverse magnetic polarization, the maximum optical selectivity can become
gigantic, given an appropriate thickness of the superconducting layer, with a moderate
dependence on temperature. This fact offers unique possibilities regarding practical applications
of such a novel photonic composite as an efficient polarization filter for electromagnetic
radiation tunable via the thickness of the covering layer and temperature.

1. Introduction

The interaction between electromagnetic radiation and matter
is amongst the most fundamental sources of dynamics in
nature; it brings about phenomena like the absorption and
emission of photons or the scattering of light. Despite its
fundamental character, this interaction can be controlled by
means of photonic crystals, i.e. regularly structured, synthetic
composites made up of materials with different refractive
indices [1–4]. Such composites exhibit unique optical
properties—selective transmission of electromagnetic waves in
definite ranges of frequency perhaps being the most prominent
of them—which offer ready exploitation for modern photonics
and optoelectronics applications.

During the past two decades, great attention has been
directed towards photonic crystals built from conventional

1 Author to whom any correspondence should be addressed.

dielectrics, either in pure form or in combination with
normal metallic constituents. Of particular interest, however,
are constituents able to undergo phase transitions from
ordered states, since they display significantly different optical
properties below and at the respective critical temperatures.
Therefore, photonic crystals with ferroelectric [5, 6] or
ferromagnetic [7, 8] constituents have been investigated
recently. The use of these materials unfolds the added
vista of controlling the optical properties of photonic
structures by the imposition of electric or, respectively,
magnetic fields. Superconductors, which show the said
kind of phase transition too, represent another important
class of materials in view of promising technological device
applications. The sensitivity of their optical properties to
the particular, superconducting or normal state has provoked
copious ideas for the implementation of superconductors
into photonic structures, e.g. as constituents of one- or
two-dimensional composites [9–20], (a) emphasizing the
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possibility of tuning the gaps between photonic bands [12, 13],
and hence calibrating transmittances [14, 15], by virtue of
superconducting elements, (b) examining the concept of an
Abrikosov vortex lattice to act as a two-dimensional photonic
crystal maintained through an external magnetic field [16],
or (c) employing these artificial structures as metamaterials
for observing effects of negative refraction at finite radiation
frequencies [17, 18]. Further applications derive from the
use of superconductor thin films for constructing band-
stop filters [21, 22] and from the realization of lattices of
superconductor cubes or plates for obtaining metamaterials at
zero frequency [23].

Motivated by the potential for strongly modifying
the optical properties of photonic crystals that planar
defects reveal [24–28], we here study the effect of a
superconducting surface layer on the transmittance, reflectance
and absorptance of a regularly structured, one-dimensional
dielectric composite. Unlike previous theoretical work
analysing superconductor constituents, with its limitations to
electromagnetic isotropy, small radiation frequencies and low
temperatures, ours accounts for electromagnetic anisotropy,
photonic excitation at arbitrary frequencies as well as
thermal excitation and normal scattering right up to the
superconductor critical temperature. Clearly, a surface layer of
distinct crystallographic anisotropy terminating an otherwise
isotropic dielectric composite will give rise to substantial
discriminations of these optical properties depending on the
polarization of the incident radiation; a fact which enables
applications of such a novel photonic composite as an efficient
polarization filter tunable via the thickness of the layer and
temperature.

In section 2 we set out the general framework for
describing propagation of the electromagnetic radiation and the
flow of electromagnetic energy by means of the convenient
vector potential approach. Applying this, in section 3 we
introduce the photonic modes and pertinent bands of the
dielectric composite, assuming linearly polarized radiation
at normal incidence, and employ both for theoretically
determining the optical properties addressed with or without
the superconducting surface layer present. In section 4
we show numerical results of these properties for an
epitaxial surface layer of a cuprate superconductor and
perovskite dielectric constituents, examining two different
layer thicknesses and three characteristic temperatures, and
compare the results obtained with those prevailing when the
surface layer were absent. Finally, in section 5 we conclude
by summarizing the insights and results obtained, suggesting
potential applications of the novel photonic composite. Details
of the model of the tensor of electric permittivity of a
superconductor established for the characterization of the
surface layer and used in our calculations can be found in the
appendix.

2. General framework

We proceed from the Maxwell equations for the electric field
E, magnetic field H and electric displacement D of the
electromagnetic radiation at position r and time t propagating

through a vacuum space or, respectively, a non-magnetic
composite in the absence of free charges and static fields:

∇ × E + 1

c

∂H

∂ t
= 0 (1)

and

∇ × H − 1

c

∂D

∂ t
= 0, (2)

with c meaning the vacuum speed of light; furthermore

∇ · H = 0 (3)

and
∇ · D = 0. (4)

Any constituent of the composite is meant to be characterized
by a linear relation of the sort

D = εE, (5)

where ε denotes the respective tensor of electric permittivity
subsuming, in general, effects of both electric polarization and
electric current flow for temporally steady excitations.

The homogeneity of equations (1)–(4) admits the
convenient introduction of a vector potential A as a single
auxiliary function of r and t to yield the representation of the
magnetic field

H = ∇ × A. (6)

With this choice, equation (3) is satisfied identically, and
equation (1) yields the representation of the electric field,

E = −1

c

∂A

∂ t
, (7)

upon supplementing with the condition (‘Coulomb gauge’) [29]

∇ · A = 0. (8)

Substitution of equations (5)–(7) into equation (2) results in the
equation of motion for A:

∇ × (∇ × A) + 1

c2

∂2

∂ t2
εA = 0. (9)

The requirement of continuity of the tangential components
of E following from equation (1) entails, in conjunction with
equation (7), that at the interface between two constituents
1 and 2 with different electric permittivities, the tangential
components of A must be continuous:

A1t = A2t . (10)

Likewise, the requirement of continuity of the normal
component of D following from equation (4) entails, in
conjunction with equations (5) and (7), the relation for A,

∇ ·
(

∂

∂ t
εA

)
= 0, (11)

which shows that at the interface between two constituents
1 and 2 with different electric permittivities, the normal
component of εA must be continuous:

(
ε

1
A1

)
n

=
(
ε

2
A2

)
n
. (12)
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If, in the case of a harmonic time dependence with frequency
ω, the vector potential A is assumed in the complex shape

A(r, t) = Ã(r) exp(−iωt) (13)

with the space-dependent part Ã, then equation (9) changes
into the master equation for Ã:

�Ã + k2
0εÃ = 0 (14)

with the wavenumber of electromagnetic radiation propagating
through a vacuum space, k0 = ω/c.

Studies of the optical properties of the composite draw
on considerations of the flow of electromagnetic energy, S,
defined by

S = c

4π
(E × H). (15)

Making recourse to the representations of the electric field E

and the magnetic field H , equations (6) and (7), and assuming
that the vector potential A herein, as a solution of equation (14)
using equation (13), is of the plane-wave type

A(r, t) = a exp [i (kε · r − ωt)] (16)

with a complex amplitude a and a real wavevector kε, the
space- or time-averaged flow of electromagnetic energy, S̄,
given by

S̄ = 1

8π

[(∇ × A∗) × ∂A

∂ t

]
(17)

succinctly reads [29]

S̄ = ω

8π
|a|2kε. (18)

3. Theory of optical properties

Let us now consider a one-dimensional, layered photonic
composite with periodically alternating dielectric constituents
a and b of respective thicknesses da and db defining the
primitive translation d = da + db along the z-axis and
occupying the half-space z � 0, covered by a superconducting
surface layer s of thickness ds extending within the range
−ds � z < 0, both in regard of a Cartesian coordinate
system x, y, z. The dielectric constituents are supposed to
be delineated by fixed values of the principal components of
the respective tensors of electric permittivity εν = εa > 1
and εν = εb > 1, neglecting electromagnetic dissipation and
assuming crystalline isotropy, whereas the superconducting
layer is understood to be characterized by the principal
components of the tensor of electric permittivity, εν = εs,ν ,
derived in the appendix, taking into account electromagnetic
dissipation and crystalline anisotropy, for ν = x, y. We
envisage that linearly polarized electromagnetic radiation in
the form of TE polarized waves, labelled by ν = x , or TM
polarized waves, labelled by ν = y, propagating in the positive
z-direction through the vacuum space z < −ds is normally
incident onto the surface z = −ds of the superconducting
layer coating the dielectric photonic composite, as shown in
figure 1. Investigations of the transmittance Tν , reflectance
Rν and absorptance Aν of such a composite, with ν = x, y

probing either type of polarization, imply solving equation (14)
for the space-dependent part of the vector potential separately
in z � 0 and −ds � z < 0 as well as z < −ds and joining the
solutions together smoothly at z = 0 and z = −ds; a procedure
which, from equations (6) and (7), ensures continuity of the
tangential components of both the electric and the magnetic
field. Making recourse to equation (18) for the space- or
time-averaged flow of electromagnetic energy then permits
assessments of these optical properties straightforwardly.

3.1. Photonic modes and bands

We start by establishing the photonic modes of the dielectric
composite in the half-space z � 0. Utilizing previous
results [30], we have for nd � z < nd + da with n =
0, 1, 2, . . .

Ãν(z) = A1 exp
[−i (kz + ka) nd

]
exp(ikaz)

+ A2 exp
[−i (kz − ka) nd

]
exp (−ikaz) (19)

and for nd + da � z < (n + 1)d with n = 0, 1, 2, . . .

Ãν(z) = B1 exp
[−i (kz + kb) nd

]
exp (ikbz)

+ B2 exp
[−i (kz − kb) nd

]
exp (−ikbz) , (20)

upon introducing the wavenumber of these modes, kz , apart
from the wavenumbers ka = k0na and kb = k0nb linked to the
refractive indices of the dielectric constituents, na = ε

1/2
a and

nb = ε
1/2
b ; the amplitudes A1, A2 and B1, B2, determined up

to an arbitrary non-zero factor, read

A1 = − (kz − kb) (ka + kb) exp (ikbdb)

+ (kz + kb) (ka − kb) exp (−ikbdb)

+ 2kb (kz − ka) exp
[
i (kzd − kada)

]
(21)

and

A2 = (kz + kb) (ka + kb) exp (−ikbdb)

− (kz − kb) (ka − kb) exp (ikbdb)

− 2kb (kz + ka) exp
[
i (kzd + kada)

]
(22)

as well as

B1 = (kz + ka) (ka − kb) exp [−i (kbd − kada)]

+ (kz − ka) (ka + kb) exp [−i (kbd + kada)]

− 2ka (kz − kb) exp
[−i (kzd + kbda)

]
(23)

and

B2 = − (kz + ka) (ka + kb) exp [i (kbd + kada)]

− (kz − ka) (ka − kb) exp [i (kbd − kada)]

+ 2ka (kz + kb) exp
[−i (kzd − kbda)

]
. (24)

The dispersion of the photonic modes itself follows from the
implicit equation

cos (kada) cos (kbdb) − 1

2

(
na

nb
+ nb

na

)
sin (kbdb) sin (kada)

= cos(kzd), (25)

which defines the relation ω = ω j(kz) for varying wavenumber
kz , the label j = 0, 1, 2, . . . numbering the photonic bands and
gaps appropriate to the chosen direction of radiation incidence
and types of polarization; it simultaneously implies the relation

3
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(a) (b)

Figure 1. Schematic view of the layered photonic composite with dielectric constituents a and b covered by a superconducting surface layer
s. The normally incident electromagnetic radiation is symbolized in the case of (a) TE polarization with the electric field (dark bold arrows)
oriented parallel to the x-axis, the magnetic field (light crossed circles) oriented parallel to the y-axis and (b) TM polarization with the
magnetic field (light bold arrows) oriented parallel to the x-axis, the electric field (dark crossed circles) oriented parallel to the y-axis of a
Cartesian coordinate system x , y, z.

(This figure is in colour only in the electronic version)

kz = kz(ω j) for varying frequency ω j of the photonic bands
and gaps with label j = 0, 1, 2, . . . called for in the evaluation
of the optical properties examined below. We comment that for
the propagating band modes, kz is real and confined to the first
Brillouin zone −π/d � kz � π/d , whereas for the evanescent
band-gap modes, kz is complex and given by kz = Gz/2 − iq ,
with the reciprocal lattice translation Gz = 0 or ±2π/d
applying to the gaps adjoining air or, respectively, dielectric
bands, and the imaginary part q > 0.

The photonic modes within the range of the superconduct-
ing layer −ds � z < 0 are

Ãν(z) = Pν exp(iks,νz) + Qν exp
(−iks,νz

)
, (26)

upon introducing the wavevector components ks,ν = k0ns,ν

linked to the principal components of the tensor of refractive
index of the superconducting layer, ns,ν = ε

1/2
s,ν , and using the

abbreviations

Pν = 1

2

[(
1 + na

ns,ν

)
A1 +

(
1 − na

ns,ν

)
A2

]
(27)

and

Qν = 1

2

[(
1 − na

ns,ν

)
A1 +

(
1 + na

ns,ν

)
A2

]
; (28)

in the vacuum space z < −ds they read

Ãν(z) = V1,ν exp(ik0z) + V2,ν exp(−ik0z), (29)

with amplitudes V1,ν , V2,ν given by

V1,ν = 1
2 [(1 + ns,ν)Pν exp(−iks,νds)

+ (1 − ns,ν)Qν exp(iks,νds)] exp(ik0ds) (30)

and

V2,ν = 1
2 [(1 − ns,ν)Pν exp(−iks,νds)

+ (1 + ns,ν)Qν exp(iks,νds)] exp(−ik0ds). (31)

3.2. Transmittance, reflectance and absorptance

We now examine the optical properties of the coated dielectric
composite for the chosen direction of radiation incidence
and types of polarization. From equation (18) together
with equation (19), the space- or time-averaged net flow of
electromagnetic energy of the transmitted waves is

S̄z,12 = ± ω

8π

[|A1|2 − |A2|2
]

ka, (32)

referring to the amplitudes A1, A2 given by equations (21)
and (22); conversely, from equation (18) together with
equation (29), the space- or time-averaged flows of
electromagnetic energy of the incident and reflected waves are

S̄z,1,ν = ω

8π

∣∣V1,ν

∣∣2
k0, S̄z,2,ν = − ω

8π

∣∣V2,ν

∣∣2
k0, (33)

resorting to the amplitudes V1,ν , V2,ν given by equations (30)
and (31).

Using equations (32) and (33), the transmittance Tν

defined, in the case of dielectric bands for −π/d � kz < 0 and
adjoining gaps or, respectively, air bands for 0 � kz � π/d
and adjoining gaps, with l = 0, 1, 2, . . ., according to

T (−)

2l,ν

T (+)
2l+1,ν

}
=

∣∣∣∣ S̄z,12

S̄z,1,ν

∣∣∣∣ (34)

thus reads

T (−)

2l,ν

T (+)
2l+1,ν

}
= 4na

× |A1|2 − |A2|2
|(1 + ns,ν )Pν exp(−iks,νds) + (1 − ns,ν )Qν exp(iks,νds)|2 ;

(35)

likewise, this quantity defined, in the case of dielectric bands
for 0 � kz � π/d and adjoining gaps or, respectively, air bands

4
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for −π/d � kz < 0 and adjoining gaps, with l = 0, 1, 2, . . .,
according to

T (+)
2l,ν

T (−)
2l+1,ν

}
=

∣∣∣∣ S̄z,12

S̄z,2,ν

∣∣∣∣ (36)

reads

T (+)
2l,ν

T (−)
2l+1,ν

}
= 4na

× |A2|2 − |A1|2
|(1 − ns,ν )Pν exp(−iks,νds) + (1 + ns,ν )Qν exp(iks,νds)|2 .

(37)

Both of these cases make use of the abbreviations Pν and
Qν spelt out in equations (27), (28) and require exploiting
equation (25). We note the limits of the bare dielectric
composite

lim
ds→0

{
T (−)

2l,ν

T (+)
2l+1,ν

}
= 4na

|A1|2 − |A2|2
|(1 + na) A1 + (1 − na) A2|2

(38)

and

lim
ds→0

{
T (+)

2l,ν

T (−)

2l+1,ν

}
= 4na

|A2|2 − |A1|2
|(1 − na) A1 + (1 + na) A2|2

. (39)

Furthermore, the limits of the bare dielectric composite
degenerating into a semi-infinite, homogeneous dielectric

lim
εb→εa

lim
ds→0

{
T (−)

2l,ν

T (+)

2l+1,ν

}
= lim

εb→εa

lim
ds→0

{
T (+)

2l,ν

T (−)

2l+1,ν

}

= 4na

(1 + na)
2

(40)

apply too, as they should.
Using equation (33), the reflectance Rν defined, in the case

of dielectric bands for −π/d � kz < 0 and adjoining gaps or,
respectively, air bands for 0 � kz � π/d and adjoining gaps,
with l = 0, 1, 2, . . ., according to

R(−)

2l,ν

R(+)
2l+1,ν

}
=

∣∣∣∣ S̄z,2,ν

S̄z,1,ν

∣∣∣∣ (41)

thus reads

R(−)
2l,ν

R(+)

2l+1,ν

}

=
∣∣∣∣ (1 − ns,ν )Pν exp(−iks,νds) + (1 + ns,ν)Qν exp(iks,νds)

(1 + ns,ν )Pν exp(−iks,νds) + (1 − ns,ν)Qν exp(iks,νds)

∣∣∣∣
2

;
(42)

similarly, this quantity defined, in the case of dielectric bands
for 0 � kz � π/d and adjoining gaps or, respectively, air bands
for −π/d � kz < 0 and adjoining gaps, with l = 0, 1, 2, . . .,
according to

R(+)
2l,ν

R(−)

2l+1,ν

}
=

∣∣∣∣ S̄z,1,ν

S̄z,2,ν

∣∣∣∣ (43)

reads

R(+)

2l,ν

R(−)
2l+1,ν

}

=
∣∣∣∣(1 + ns,ν)Pν exp(−iks,νds) + (1 − ns,ν)Qν exp(iks,νds)

(1 − ns,ν)Pν exp(−iks,νds) + (1 + ns,ν)Qν exp(iks,νds)

∣∣∣∣
2

.

(44)

Again, both of these cases make use of the abbreviations Pν

and Qν spelt out in equations (27), (28) and require exploiting
equation (25). We note the limits of the bare dielectric
composite

lim
ds→0

{
R(−)

2l,ν

R(+)

2l+1,ν

}
=

∣∣∣∣ (1 − na) A1 + (1 + na) A2

(1 + na) A1 + (1 − na) A2

∣∣∣∣
2

(45)

and

lim
ds→0

{
R(+)

2l,ν

R(−)

2l+1,ν

}
=

∣∣∣∣ (1 + na) A1 + (1 − na) A2

(1 − na) A1 + (1 + na) A2

∣∣∣∣
2

. (46)

Furthermore, the limits of the bare dielectric composite
degenerating into a semi-infinite, homogeneous dielectric

lim
εb→εa

lim
ds→0

{
R(−)

2l,ν

R(+)
2l+1,ν

}
= lim

εb→εa

lim
ds→0

{
R(+)

2l,ν

R(−)
2l+1,ν

}

=
(

1 − na

1 + na

)2

(47)

apply too, as they should.
Finally, from equations (35), (37) and (42), (44), the

absorptance Aν is defined such that the conservation relations
with j = 0, 1, 2, . . .

T (−)
j,ν + R(−)

j,ν + A(−)
j,ν = T (+)

j,ν + R(+)
j,ν + A(+)

j,ν = 1 (48)

hold, in keeping with the need for continuity of the flow of
electromagnetic energy.

4. Numerical results

To appraise the effect of a superconducting surface layer
on the optical properties of the layered photonic composite,
we propose that the dielectric constituents are made from
almost cubic perovskites, whose electric permittivity can
be widely tuned by proper doping and which allow nearly
perfect epitaxial growth. Furthermore, we imagine that the
superconducting layer consists of a single-crystalline, highly
anisotropic and very pure yttrium–barium cuprate epitaxially
grown on the composite substrate such that its (electrically
‘light’) crystallographic a-axis and its (electrically ‘heavy’)
crystallographic c-axis coincide, respectively, with the x- and
y-axes of the chosen Cartesian coordinate system x , y, z. Our
numerical evaluations, shown graphically below, relate to the
geometrical and materials data listed in table 1.

Figure 2 illustrates the dispersion of the photonic modes of
the bare dielectric composite derived from equation (25) and
figure 3 depicts the variation with frequency of the pertinent
transmittance Tν and reflectance Rν in the range spanned by
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Table 1. Geometrical and materials data used in calculations.

Data relating to the dielectric photonic composite:

Primitive translation, d (m) 5.0 × 10−6

Relative layer thickness, da/d 0.75
Electric permittivity, εa 20
Relative layer thickness, db/d 0.25
Electric permittivity, εb 5

Data relating to the superconducting surface layer:

Critical temperature, Tc (K) 90 [31]
Half-gap energy at absolute zero, �0 (eV) 3.0 × 10−2 [31]
London tensor x-component at absolute zero, �(0)

s,x (s2) 2.1 × 10−30 [32, 33]
London tensor y-component at absolute zero, �(0)

s,y (s2) 1.9 × 10−28 [32, 33]
Scattering rate constant, α (s−1) 1.4 × 1013 [34]

Figure 2. Dispersion of the photonic modes of the bare dielectric
composite in the cases of TE polarization, where ν = x , and TM
polarization, where ν = y, due to on-axis propagation: normalized
frequency ωd/2πc of the lowest four photonic bands as a function of
the normalized wavenumber kzd/2π within the first Brillouin zone.

the lowest four photonic bands, as calculated from the limiting
equations (38), (39) and (45), (46), assuming TE polarization,
where ν = x , and TM polarization, where ν = y, for normally
incident electromagnetic radiation. We remark that, since in
accord with our premise about the dielectric constituents, no
electromagnetic dissipation takes place therein, Tν and Rν are
strictly complementary regarding each type of polarization at
any given frequency, obviously bearing witness to the sequence
of photonic bands and gaps.

Figures 4–9 present the variation with frequency
of the transmittance Tν , reflectance Rν and absorptance
Aν of the coated dielectric composite obtained from
equations (35), (37), (42), (44) and (48), in the cases of TE
polarization, where ν = x , and TM polarization, where
ν = y, for on-axis propagation, examining two normalized
thicknesses of the superconducting layer, ds/d = 0.025 and
ds/d = 0.25, and three representative temperatures, the helium
temperature T = 4.2 K, the nitrogen temperature T = 77 K
and the critical temperature Tc = 90 K. Dwelling on the
physical data chosen to characterize the dielectric composite,
the range of frequency discussed here (with its maximum
centred in the infrared part of the spectrum of electromagnetic
radiation) encompasses the pair breaking frequency of the

0.5

ωd/2πc

Figure 3. Transmittance Tν and reflectance Rν of the bare dielectric
composite as a function of the normalized frequency ωd/2πc in the
cases of TE polarization, where ν = x , and TM polarization, where
ν = y, due to on-axis propagation.

superconducting constituent at all temperatures; the respective
plasma frequencies, however, lie outside this range for either
type of polarization.

A comparison of the optical properties of the coated
dielectric composite with those of the corresponding bare
composite reveals obvious similarities, but even more
substantial differences depending on the thickness of the
superconducting layer, frequency, temperature and polarization
of the incident electromagnetic radiation. Thus, since only
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(a) (b)

Figure 4. Transmittance Tν , reflectance Rν and absorptance Aν of the coated dielectric composite as a function of the normalized frequency
ωd/2πc for a superconducting surface layer of normalized thickness ds/d = 0.025 at the helium temperature T = 4.2 K in the case of (a) TE
polarization, addressing the component of the normalized London penetration depth λs,ν /ds = 0.980, where ν = x , and (b) TM polarization,
addressing the component of the normalized London penetration depth λs,ν/ds = 9.326, where ν = y, due to on-axis propagation. The
normalized pair breaking frequency here is ωsd/2πc = 0.242.

the band modes propagate, finite transmittances, exposed
in the upper plots of figures 4–9, solely appear across the
photonic bands, with zero transmittance due to the evanescent
modes over the photonic gaps, just as in the upper plot of
figure 3. However, for the thinner superconducting layer
(figures 4–6), there is a monotonic increase of the maxima
of the transmittance Tx with the number of the bands and

a depression of the transmittance by one or two orders
of magnitude, depending on frequency, in the case of TE
polarization, whereas the variation with frequency of the
transmittance Ty in the case of TM polarization is very much
like for the bare composite at all temperatures considered
here. By contrast, for the thicker superconducting layer
(figures 7–9), there is a monotonic increase of the maxima

7
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(a) (b)

Figure 5. Transmittance Tν , reflectance Rν and absorptance Aν of the coated dielectric composite as a function of the normalized frequency
ωd/2πc for a superconducting surface layer of normalized thickness ds/d = 0.025 at the nitrogen temperature T = 77 K in the case of (a) TE
polarization, addressing the component of the normalized London penetration depth λs,ν /ds = 1.439, where ν = x , and (b) TM polarization,
addressing the component of the normalized London penetration depth λs,ν/ds = 13.687, where ν = y, due to on-axis propagation. The
normalized pair breaking frequency here is ωsd/2πc = 0.189.

of the transmittance Ty with the number of the bands in the
case of TM polarization at all temperatures considered here,
whilst the transmittance Tx is depressed by 5–10 orders of
magnitude, depending on both frequency and temperature, in
the case of TE polarization. Taken together, these facets yield
a maximum optical selectivity (Ty/Tx)max of the order of 102

for the thinner superconducting layer and of the order of 109

for the thicker superconducting layer in switching from TE to
TM polarization, with a moderate dependence on temperature
for either of the thicknesses addressed.

Since at frequencies within the gaps between the photonic
bands, electromagnetic radiation cannot be transmitted,
nevertheless absorbed, the reference to photonic bands and
gaps as regards the reflectances shown in the central plots

8
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(b)(a)

Figure 6. Transmittance Tν , reflectance Rν and absorptance Aν of the coated dielectric composite as a function of the normalized frequency
ωd/2πc for a superconducting surface layer of normalized thickness ds/d = 0.025 at the critical temperature Tc = 90 K in the case of (a) TE
polarization, addressing the component of the normalized London penetration depth λs,ν /ds = ∞, where ν = x , and (b) TM polarization,
addressing the component of the normalized London penetration depth λs,ν/ds = ∞, where ν = y, due to on-axis propagation. The
normalized pair breaking frequency here is ωsd/2πc = 0.

of figures 4–9 is more involved (if at all extant) than that
evident in the lower plot of figure 3. Thus, for the thinner
superconducting layer (figures 4–6), the reflectance Rx is
almost unity throughout, yet exhibits sharp dips at frequencies
near the lower edges of the gaps, their depth increasing
monotonically with the number of the gaps, in the case of
TE polarization, whereas the variation with frequency of the

reflectance Ry in the case of TM polarization is very much
like for the bare composite, at all temperatures addressed. By
contrast, for the thicker superconducting layer (figures 7–9),
the reflectance Ry shows minima at frequencies within the
photonic bands, their depth increasing monotonically with the
number of the bands, in the case of TM polarization, unlike
for the bare composite, at all temperatures addressed. The

9
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(a) (b)

Figure 7. Transmittance Tν , reflectance Rν and absorptance Aν of the coated dielectric composite as a function of the normalized frequency
ωd/2πc for a superconducting surface layer of normalized thickness ds/d = 0.25 at the helium temperature T = 4.2 K in the case of (a) TE
polarization, addressing the component of the normalized London penetration depth λs,ν /ds = 0.098, where ν = x , and (b) TM polarization,
addressing the component of the normalized London penetration depth λs,ν/ds = 0.933, where ν = y, due to on-axis propagation. The
normalized pair breaking frequency here is ωsd/2πc = 0.242.

reflectance Rx in the case of TE polarization is again almost
unity throughout, but reveals a minute step-like drop around
the pair breaking frequency of the superconducting constituent
at the temperature T = 4.2 K, a slightly more pronounced,
smeared-out fall at the temperature T = 77 K and a rapid,
monotonic decay at the temperature Tc = 90 K, without any
sign of reference to the photonic bands and gaps.

The absorptances, originating from electromagnetic
dissipation in the superconducting constituent, are displayed
in the lower plots of figures 4–9. Accordingly, the following
general characteristics appear to hold: electromagnetic
dissipation builds up with temperature, as does the density
of the normal electrons, irrespective of the thickness of the
superconducting layer and type of polarization. Yet, for a fixed

10
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(a) (b)

Figure 8. Transmittance Tν , reflectance Rν and absorptance Aν of the coated dielectric composite as a function of the normalized frequency
ωd/2πc for a superconducting surface layer of normalized thickness ds/d = 0.25 at the nitrogen temperature T = 77 K in the case of (a) TE
polarization, addressing the component of the normalized London penetration depth λs,ν /ds = 0.144, where ν = x , and (b) TM polarization,
addressing the component of the normalized London penetration depth λs,ν/ds = 1.369, where ν = y, due to on-axis propagation. The
normalized pair breaking frequency here is ωsd/2πc = 0.189.

thickness of this layer and a given frequency and temperature,
it is stronger in the case of TE polarization than in the case
of TM polarization owing to the higher normal conductivity,
and hence the higher normal current density, along the x-
direction as opposed to the y-direction; a trait particularly
discernible at the lowest temperature addressed. Evidence of
the underlying photonic band structure is more distinct for the

thinner superconducting layer and TM polarization than for the
thicker superconducting layer and TE polarization due to the
stronger overall shielding effect prevailing in the latter case.
Specifically, for the thinner superconducting layer (figures 4–
6), the absorptance Ax manifests sharp spikes at frequencies
near the lower edges of the photonic gaps, their height
increasing monotonically with the number of the gaps, in the

11
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(a) (b)

Figure 9. Transmittance Tν , reflectance Rν and absorptance Aν of the coated dielectric composite as a function of the normalized frequency
ωd/2πc for a superconducting surface layer of normalized thickness ds/d = 0.25 at the critical temperature Tc = 90 K in the case of (a) TE
polarization, addressing the component of the normalized London penetration depth λs,ν /ds = ∞, where ν = x , and (b) TM polarization,
addressing the component of the normalized London penetration depth λs,ν/ds = ∞, where ν = y, due to on-axis propagation. The
normalized pair breaking frequency here is ωsd/2πc = 0.

case of TE polarization at all temperatures considered here, but
reveals a sudden increase around the pair breaking frequency of
the superconducting constituent at the temperature T = 4.2 K,
whereas the absorptance Ay displays minima at frequencies
near the lower edges of the photonic gaps, their depth
increasing monotonically with the number of the gaps, in the
case of TM polarization at all temperatures addressed, yet

shows a sudden rise around the pair breaking frequency of the
superconducting constituent instead of a minimum at the above
temperature. Similarly, for the thicker superconducting layer
(figures 7–9), the variation with frequency of the absorptance
Ay in the case of TM polarization is very much like for the
thinner superconducting layer, although with its magnitude
increased, at all temperatures addressed. By contrast, the

12
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absorptance Ax in the case of TE polarization shows a step-like
rise around the pair breaking frequency of the superconducting
constituent at the temperature T = 4.2 K, a smeared-out ascent
at the temperature T = 77 K and a steep, monotonic rise
at the temperature Tc = 90 K, again without any trace of
reference to the photonic bands and gaps; behaviour virtually
complementary to that of the reflectance Rx at any given
frequency, demonstrating a property of the superconductor
alone.

We comment that, in reality, at frequencies far below the
pair breaking frequency of the superconducting constituent at
the temperature T = 77 K, the absorptance Ax in the case
of TE polarization and the absorptance Ay in the case of TM
polarization are expected to be somewhat enhanced compared
with the predictions of figures 5 and 8 due to a coherence effect
not embodied in the model taken as a basis for the respective
tensor of electric permittivity. (For details see the appendix.)
On the other hand, at the temperatures T = 4.2 K and Tc =
90 K, the absorptance Ax in the case of TE polarization and
the absorptance Ay in the case of TM polarization are certainly
reliably predicted by the figures 4, 6 and 7, 9 throughout the
range of frequencies displayed.

5. Conclusions

In the framework of a vector potential approach, we have
investigated, both analytically and numerically, the effect
of a strongly anisotropic superconducting surface layer on
the transmittance, reflectance and absorptance of a one-
dimensional, layered dielectric composite with periodically
alternating, isotropic constituents assuming linearly polarized,
normally incident electromagnetic radiation. The underlying
model of the electric permittivity of the superconducting
constituent accounts for photonic excitation at frequencies
both below and above the superconductor pair breaking
frequency as well as thermal and normal scattering right
up to the superconductor critical temperature. Resorting
to an analysis of the propagating band modes and the
evanescent band-gap modes, the transmittance, reflectance and
absorptance of the coated composite have been established
for two different thicknesses of the superconducting layer
at three representative temperatures and compared with the
corresponding quantities of the bare composite, in the cases of
TE and TM polarization of the electromagnetic radiation. The
optical properties addressed combine traits characteristic of the
periodic dielectric composite and the superconducting layer
too, revealing, e.g., band-like patterns of the transmittance
and reflectance, but also step-like or smeared-out patterns of
the reflectance and absorptance, depending on the thickness
of the superconducting layer and temperature. By virtue
of the anisotropy of the superconducting layer covering the
dielectric composite, a marked reference of these features
to the particular type of polarization persists. Thus, in
switching from TE to TM polarization, the maximum optical
selectivity can become gigantic, given an appropriate thickness
of the superconducting layer, with a moderate dependence on
temperature. This fact offers unique possibilities regarding
practical applications of such a novel photonic composite as

an efficient polarization filter for electromagnetic radiation
tunable via the thickness of the covering layer and temperature.
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Appendix. Tensor of electric permittivity of a
superconductor

We introduce a working model of the tensor of electric
permittivity of a superconductor which accounts for crystalline
anisotropy, photonic excitation at arbitrary frequencies
ω � 0 as well as thermal excitation and normal scattering
over the whole range of absolute temperature 0 � T � Tc;
features duly extending those of the allied representation of
a generalized two-fluid model set forth before [35]. Resting
upon a phenomenological approach, our model unites two
key aspects of superconductivity, viz. the presence of both
superelectrons (‘Cooper pairs’) and normal electrons in the
superconducting state and the phase transition to the normal
state caused by the incident electromagnetic radiation at
temperatures below Tc.

Consider a bulk, single-crystalline superconductor of
orthorhombic structure, with its principal crystallographic
directions oriented parallel to the axes of the Cartesian
coordinate system x , y, z, so that all (symmetric) second-rank
tensors characterizing superconductor properties are entirely
determined by their respective diagonal elements alone. Thus,
a harmonic time dependence like in equation (13) yields for
the principal components of the tensor of electric permittivity
of the superconductor, εs,ν(ω, T ), with ν = x, y, z,

εs,ν (ω, T ) = 1 + 4π i

ω
σs,ν (ω, T ) . (A.1)

The relevant components of the pertaining tensor of dynamic
electrical conductivity, σs,ν (ω, T ), herein may be expressed as

σs,ν (ω, T ) = f< (ω, T ) σ (<)
s,ν (ω, T ) + f>(ω, T )σ (>)

s,ν (ω, T ),

(A.2)
where

f< (ω, T ) = 1

exp
[ h̄(ω−ωs (T ))

kB T

] + 1
(A.3)

denotes the probability for superelectrons coexisting alongside
normal electrons due to thermal excitation and

f> (ω, T ) = 1

exp
[ h̄(ωs (T )−ω)

kB T

] + 1
(A.4)

means the complementary probability for superelectrons being
broken into normal electrons due to photonic excitation,
referring to Planck’s constant h̄ and Boltzmann’s constant kB as
well as to the pair breaking frequency ωs(T ); the latter quantity
is defined by the requirement

h̄ωs(T ) = 2�(T ) (A.5)
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with the temperature-dependent superconductor half-gap
energy �(T ) which, for 0 � T � Tc, obeys the approximate
form

�(T ) ∼= �0

(
1 − T 3

T 3
c

)1/4

, (A.6)

resorting to the superconductor half-gap energy at absolute
zero, �0. Evidently, the particular ansatz of equations (A.3)
and (A.4) derives from the notion that the probabilities
under consideration should vary about ωs(T ) over a scale
of frequencies corresponding to the energy of thermal
fluctuations. If we suppose that the total electric current
density in the superconductor is made up of the density of
the supercurrent and/or the density of the normal current, with
the superconducting channel being described by the London
theory and the normal channel being modelled by the Drude
theory [35], then

σ (<)
s,ν (ω, T ) = 1

�s,ν (T )

[
πδ (ω) + i

ω

]
+ n(T )

ntot
σ (>)

s,ν (ω, T )

(A.7)
and

σ (>)
s,ν (ω, T ) = σn,ν (T )

1 − iωτn(T )
, (A.8)

where δ(ω) stands for the Dirac delta function, n(T ) governs
the density of the normal electrons and ntot sets the density
of the total of the conduction electrons. The principal
components of the temperature-dependent London tensor,
�s,ν(T ), remarked on here, are given by

�s,ν(T ) = �(0)
s,ν

1 − T 4

T 4
c

(A.9)

with the respective components of the London tensor at
absolute zero, �(0)

s,ν , in turn specified as

�(0)
s,ν = mν

e2ntot
, (A.10)

or, equivalently, by the related principal components of the
temperature-dependent London penetration depth, λs,ν (T ),
understanding

λs,ν (T ) = λ(0)
s,ν(

1 − T 4

T 4
c

)1/2
(A.11)

with the respective components of the London penetration
depth at absolute zero, λ(0)

s,ν , in turn spelt out as

λ(0)
s,ν =

(
mνc2

4πe2ntot

)1/2

, (A.12)

quoting the principal components of the effective-mass
tensor of the normal electrons, mν , and the elementary
charge, e. Hence, according to the definition of the
temperature-dependent London tensor or the temperature-
dependent London penetration depth in terms of n(T ) and ntot,
the result

n(T )

ntot
= T 4

T 4
c

(A.13)

obtains. The principal components of the tensor of static
normal conductivity, σn,ν (T ), finally read

σn,ν(T ) = e2ntotτn(T )

mν

, (A.14)

using the inverse proportionality for the scattering time
of the normal electrons, τn(T ), appropriate to very pure
superconductors [34]

1

τn(T )
= α

T

Tc
(A.15)

with the scattering rate constant α; this requires that the
condition on the range of temperature ωs(T )τn(T ) � 1
applies.

It is worth commenting that, in contrast to the predictions
ensuing from the model described above, a wide maximum
of the real part of the components of the tensor of dynamic
electrical conductivity, σs,ν (ω, T ), of doubled height due to
coherent electron scattering exists at frequencies far below
the pair breaking frequency ωs(T ) and temperatures around
T/Tc

∼= 21/25, which a two-fluid approach, with its
invaluable asset of mathematical simplicity, cannot in principle
describe [36]. However, notwithstanding the fact that in
this restricted frequency–temperature domain some features
may be missed, the suggested model does otherwise exhibit
plausible properties consistent with the general requirements
on the dispersion of the dynamic electrical conductivity.

We note that the representation of the principal
components of the tensor of dynamic electrical conductivity,
equation (A.2), entails the asymptotic limit

lim
ω→∞ 4πω Im σs,ν (ω, T ) = ω2

p,ν , (A.16)

with the respective components of the tensor of plasma
frequency ωp,ν given by

ωp,ν =
(

4πe2ntot

mν

)1/2

. (A.17)

Applying the Kramers–Kronig dispersion relations [37] (which
link the real and imaginary parts of any complex response
function over the whole range of frequencies) to the general
form of equation (A.1) in conjunction with equation (A.16)
thus yields the sum rule for the principal components of the
tensor of electric permittivity in 0 � T � Tc:

∫ ∞

0
ω Im εs,ν(ω, T ) dω = π

2
ω2

p,ν . (A.18)

Of course, if our model were completely rigorous, this rule
would be strictly obeyed. Indeed, in the low-temperature limit
T → 0, where τn(T ) → ∞ from equation (A.15) and

lim
T →0

εs,ν(ω, T ) = 1 − ω2
p,ν

ω2
[1 − iπωδ(ω)] , (A.19)

whence the superconductor is seen to behave like a perfect
conductor, the condition (A.18) is fulfilled identically; on the
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other hand, in the high-temperature limit T → Tc, where
ωs(T ) → 0 from equation (A.5) with equation (A.6) and

lim
T →Tc

εs,ν(ω, T ) = 1 + ω2
p,ν

ω2

[
iωτn (Tc)

1 − iωτn (Tc)

]
, (A.20)

whence the superconductor is seen to behave like a normal
conductor, the condition (A.18) is fulfilled identically again.
Yet, for temperatures within these extremes and the values of
�0 and α given in table 1, our model overestimates the integral
in equation (A.18), albeit merely by about 5% at most, the
maximum relative deviation occurring for T/Tc

∼= 11/15;
a fact which, together with the gratification of the demand
concerning the assumed material purity for temperatures
virtually up to Tc, underlines the applicability of this model
to superconductors that are well described in the local limit
represented by the classical London approach [38].
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